Jadara University

ref# FR/P1/P1/1/v1

COURSE DESCRIPTION

Faculty	Science and Information Technology					
Department	Software Engineering			NQF level		7
Course Title	Programming Language I	Code	185103	Prerequisi	ite	
Credit Hours	3	Theory	2	Practical		1
Course Leader	Dr. Moath Najeeb	email	m.najeeb@jadara.edu.jo			
Lecturers	Dr. Arij Hamad Dr. Aymen Abu-Errub Dr. Marah Sarireh Dr. Moaath Shatnawi Dr. Qutaiba Zaqiba Dr. Saleh Omar Dr. Zahi AbuSarhan Dr. Mohammad Khasawneh	emails	a.hamad@jadara.edu.jo a.abu-errub@jadara.edu.jo m.sarireh@jadara.edu.jo mo.shatnawi@jadara.edu.jo q.azqiba@jadara.edu.jo saleh.o@jadara.edu.jo z.abusarhan@jadara.edu.jo mo.alkhasawneh@jadara.edu.jo			
Lecture time		Classroom	Face to face			
Semester	1st Sem (2024/2025)	Production	2009	Updated	202	24

Short Description

This course introduces the use of C++ as an aid to solve mathematical and scientific problems, creating, compiling, and executing C++ programs (Data Types, Variables, Nested control structure, Nested Loops structure, Predefined and user defined functions, One dimensional arrays).

Course Objectives

- To let students, acquire knowledge and understand structured programming.
- Promote students' skills to analyze, design, executing C++ structured programming concept.

Learning Outcomes

- A. Knowledge Theoretical Understanding
- a1. **Illustrate** basic concepts on C++ commands and code segments. (K1)
- **B. Knowledge Practical Application**
- a2. Construct C++ code to solve basic problems and some real word cases. (K4)
- C. Skills Generic Problem Solving and Analytical Skills
- b1. **Evaluate** C++ code using problem-solving techniques and constraints. (S2)
- D. Skills Communication, ICT, and Numeracy
- E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

• Lecture nots, Labs, and references

Assessment Methods

• Quizzes, lab work, Assignments, Midterm exam, and Final exam.

Course Contents							
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods		
1	3	a1	Introduction to C++ programming: C++ program environment. processing a C++ program, programming with the problem analysis coding execution cycle.	Face to face Lectures & Labs			
2-4	9	a1, a2, b1	Basic Elements of C++ (Comments, reserved words, identifiers), data types and memory allocation, arithmetic operators and operator precedence, constants and variables, input (read) statement, increment and decrement operators, output, creating a C++ program, debug, and run using SDK.	Face to face Lectures & Labs	Quiz		
5-8	12	a1, a2, b1	Programming Flow of Control: Selective structure in C++ programming, if statements, nested if, Repetitive structure (Loops) (For, While and Do- While), nested loops.	Face to face Lectures & Labs	Quiz Assignment		
	MIDTERM EXAM						
9-12	12	a1, a2, b1	Functions: Predefined and user-defined functions, void functions, value-returning functions, formal parameter list, actual parameters, Function Prototype, value and reference parameters, scope of an identifier, global variables, default parameters.	Face to face Lectures & Labs	Quiz Assignment		
13-14	6	a1, a2, b1	Arrays and Strings: Declaring and processing 1D arrays, array initialization, character arrays.	Face to face Lectures & Labs	Assignment		
Final exam							

Infrastructure				
Textbook	C++ Programming: From Problem Analysis to Design. D.S. Malik, 8th Ed., 2018.			
References	C++ How to Program, Paul J. Deitel and Harvey Deitel, Pearson, 10th Ed., 2016.			
Required reading				
Electronic				
materials				
Other				

Course Assessment Plan						
Assessment Method		Grade	CLOs			
			a1	a2	b1	
Midterm		30	8	12	10	
Coursework		20	4	1	15	
Final Exam		50	15	25	10	
nt	Assignments					
sme	Case study					
sses	Discussion and interaction					
Coursework assessment methods	Group work activities					
	Lab tests and assignments					
	Presentations					
Ď	Quizzes					
Total		100	27	38	35	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.