

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Computer Science			NQF level	7	
Course Title	Image Processing	Code	508472Prerequisite50		501241	
Credit Hours	3	Theory	3 Practical		0	
Course Leader	Ms. Nada Aljarrah	email				
Lecturers	Ms. Nada Aljarrah	emails	n.aljarrah@jadara.edu.jo			
Lecture time	8:30 - 10:00	Classroom		Attendance		
Semester	1	Production		Updated	2023-2024	
Type of Teaching	□ Face to Face □	Blended		Inline		

Short Description

This course aims to learn image processing using Matlab and science problems, introduce to image processing, operations, transforms, image types, Filter, Point processing, neighborhood processing, fourier Processing, Image restoration, image segmentation, and image Morphology.

Course Objectives

Upon completion of this course, students should be able to:

- Develop a theoretical foundation of fundamental Digital Image Processing concepts.
- Provide mathematical foundations for digital manipulation of images; image acquisition; preprocessing; segmentation; Fourier domain processing; and compression.
- Gain experience and practical techniques to write programs using MATLAB language to manipulate images digitally; image acquisition; preprocessing; segmentation; Fourier domain processing; and compression.
- familiarize himself/herself with image/video compression standards.

Course Intended Learning Outcomes (CILOs)

A. Knowledge - Theoretical Understanding

The student upon completion of this course will be able to

a1: Have a clear understanding of the principals the Digital Image Processing terminology used to describe features of images. (K1)

B. Knowledge - Practical Application

The student upon completion of this course will be able to

a2: Have a good understanding of the mathematical foundations for digital manipulation of images; image acquisition; preprocessing; segmentation; Fourier domain processing, compression and analysis. (K5)

C. Skills - Generic Problem Solving and Analytical Skills

The student upon completion of this course will be able to

b1: Use different digital image processing algorithms, and Design, code and test digital image processing applications using MATLAB language. (S2)

D. Skills - Communication, ICT, and Numeracy							
b2: Be able to use the documentation for, and use, MATLAB library and MATLAB Digital Image Processing Toolbox (IPT). (S3)							
E. Competence: Autonomy, Responsibility, and Context							
c1. Be able to write programs in Matlab language for digital manipulation of images; image acquisition; preprocessing; segmentation; Fourier domain processing; and compression. ()							
Teaching and Learning Methods							
Face to Face Lectures Brain Storming Synchronous remote Asynchronous remote Using Video Discussions Research Project Case Study Field visit Problem solving							
Assessment Methods							
□ Formative Assessment □ Quiz □ Lab Exam □ Homework □ Project Assessment □ Oral Presentation □ Midterm □ Final Exam							

Course Contents							
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods		
1	3	a1	Introduction	Presentation & discussions	Assignment (lab Project)		
2	3	a1,a2	Image Files and File Types	Presentation & discussions	Assignment (lab Project)		
3	3	a1,a2	Image Display	Presentation & discussions	Assignment (lab Project)		
4	3	a1, a2, b1	Point Processing	Presentation & discussions	Assignment (lab Project)		
5	3	a2,		Presentation & discussions	Assignment		
6	3	b1, c1			(lab Project)		
7	3	a2, b1, c1	Image Geometry	Presentation & discussions	Assignment (lab Project)		
8	1:30	a1,a2, b1	Midterm Exam				
9	3	a2, b1, b2, c1	The Fourier Transform	Presentation & discussions	Assignment (lab Project)		
10	3	a2, b1,b2, c1	Image Restoration	Presentation & discussions	Assignment (lab Project)		

11	3	a2, b2, c1	Image Segmentation	Presentation & discussions	Assignment (lab Project)		
12	3	a2, b2, c1	Mathematical Morphology	Presentation & discussions	Assignment (lab Project)		
13	3	a2, b2, c1	Image Topology	Presentation & discussions	Assignment (lab Project)		
14	2	a1,a2, b1,b2, c1	Final exam				
Infrastructure							
TextbookA computational introduction to digital image processing, Alasdai McAndrew, CRC Pres, 2016, 2 nd Ed.							
ReferencesColor Image Processing and Application, Plataniotis and Ventano Dogotal Signal and Image Processing using MATLAB.				anopoulos.			
Required reading							
Electronic materials			Available on : http://elearning.jadara.edu.jo/CourseContent/index/10774/				
Other Any other book related to Image Processing							

Assessment Method		Grade					
			a1	a2	b1	b2	c1
First (Midterm)		30	10	10	10		
Second (if applicable)							
Final Exam		40	5	10	10	10	5
Coursework		20					
	Assignments	30			5	10	15
ent	Case study						
sessm	Discussion and interaction						
vork asso methods	Group work activities						
Coursework assessment methods	Lab tests and assignments						
Cou	Presentations						
	Quizzes						
Total		100	15	20	25	15	20

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.