

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Computer science			NQF level	6	
Course Title	Data structures	Code	501241 Prerequisite 501221			
Credit Hours	3 hours	Theory	2 h Practical 1 h			
Course Leader	Dr. Sami Qawasmeh	email	sqawasmeh@jadara.edu.jo			
Lecturers	Dr. Sami Qawasmeh	emails	sqawasmeh@jadara.edu.jo			
Lecture time	11:30 – 13:00 Mon,Wed	Classroom	Online			
Semester	First - 2021-2022	Production	20/6/2020 Updated 20/10/2021			
Awards	B.S.		Attendance Fulltime			

Short Description

This course is to introduce students to various types of data structures, their logical and physical representations, and their related operations. Topics to be covered include: data structure, operations, lists and matrix representations, linked lists and their different variations, string storage representation and manipulation, queues and stacks and their applications, tree structures and their different variations, graphs and networks.

Course Objectives

The main objective of this course is to provide students with the theoretical background and practical experience relating to the design and implementation of several types of data structures. Students, during this course, are trained to deal with Abstract Data Types (ADT) and to implement different data structures using different methods. Also, Writing advanced programs which are based on arrays, structures, strings, lists, stacks, queues, hash tables and trees and recursion. In addition, selecting appropriate data structures for modeling a given problem.

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1. Define the basic concepts involved in structured problem solving and to design correct, appropriate and adequate Data structures with respect of time complexity.

B. Knowledge - Practical Application

a2. Demonstrate the usage of pointers and new, delete operations to allocate and to de-allocate memory space dynamically, to use ->, &, * operators, and to access dynamic data correctly, and show how to use linked structure to solve basic application problems with insertion and deletion of a node anywhere in the list.

C. Skills - Generic Problem Solving and Analytical Skills

- b1) Develop applications based on using different data structures to determine the appropriate data structure(s)
- b2) Identify the advantages and disadvantages of specific algorithms and data structures.

D. Skills - Communication, ICT, and Numeracy c1) **Design the best solution by** organizing material for problem-solving methods.

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

- Class lectures, lecture notes, homework assignments, and lab are designed to achieve the course objectives.
- You should read the assigned chapters before class, complete assignments on time, participate in class and do whatever it takes for you to grasp this material. Ask lots of questions.
- You should attend the 2 hours weekly lab that practice the theoretical material covered in the class.
- You are responsible for all material covered in the class and in the lab.
- Please check e-learning site regularly.

Assessment Methods		
- Midterm Exam	30 %	
- Assignments (Reports /Quizzes/ Seminar / Tutorials)	30 %	
- Final Examination	40 %	

	Course Contents						
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods		
1,2	6	a: 1,2	 Linear and Non - Linear Data Structures Complex Structures (Arrays and Records), Array Based Structures. One - and Multi-dimensional arrays and arrays of records. 	Online lectures, Program Examples	homework		
3,4	6	b:1,2	 Pointers Operators. Pointer Expressions and pointer arithmetic, Relation between pointers and Arrays. Dynamic structures: Pointer Variable Definitions and Initialization, Dynamic memory allocation - Pointers and records. 	Online lectures, Program Examples	Quiz		
5-8	12	a:1,2 b: 1,2 c: 1	 Introduction, Implementation of Linked List, Linked List Vs. Arrays, Memory Allocation & De-allocation for a Linked List, Linked List operations(insertion, deleteion), Types of Linked List, and Application of Linkedlists. 	Online lectures, Program Examples	Homework Midterm Assignment		
9,11	9	a:1,2 b: 1,2 c: 1	 Linked list (double, Bidirectional, Circular) Linked-list, operations and Applications on linked-list, sorted and unsorted linked-lists 	Online lectures, Program Examples	Homework Assignment		
12,14	9	a:1,2 b:1,2 c: 1	 Stacks and Queues. Behavior of a Stack. Basic operations on a Stack. Linked-list based implementation. Expression evaluation using a stack. Queues. Behavior of a queue. Basic queue operations Study implementations using a linked-list. Queues- (Priority Queues), Double- Ended Queues, Circular Queues 	Online lectures, Program Examples	Quiz and assignment		

Infrastructure				
TextbookD. S. Malik, "C++ Programming: Program Design Including Data Structures, 8th edition", 2018.				
References	C++ How to program, H. M. Deitel and P. J. Deitel, Pearson India Education; 10th ed, 2017.			
Required reading				
Electronic materials	Posted materials			
Other	Handout materials			

Course Assessment Plan								
Assessment Method		Grade	CLOs					
			a1	a2	b1	b2	c1	
First (Midterm)		30	12	10	8	-	-	
Second (if applicable)		-	-	-	-	-	-	
Final Exam		50	8	10	10	10	12	
Coursework		20						
nt	Assignments	5		5				
sme	Case study							
Coursework assessment methods	Discussion and interaction							
	Group work activities							
	Lab tests and assignments							
	Presentations							
	Quizzes	15	8		7			
Total		100	25	25	23	10	17	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.