

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology						
Department	Mathematics NQF level 5						
Course Title	Real Analysis I	Code	505307 Prerequisite 505245				
Credit Hours	3	Theory	3	Practical	0		
Course Leader	Prof. Dr. Mohammad W. Alomari	email	malomari@jadara.edu.jo				
Lecturers	Prof. Dr. Mohammad W. Alomari	emails	malomari@jadara.edu.jo				
Lecture time	08:30-10:00 Mon., Wed.	Classroom	D010	Attendance	Fulltime		
Semester	Second Semester 2023\2024	Production	2008	Updated	2024		

Short Description

This course covers 6 Chapters, each of which is divided into several topics:

- The properties of real numbers and their main postulates are discussed.
- The concept of Metric Spaces is considered; preciously; the open set, closed set, closure set, compact set, and connected set are studied in detail.
- The concept of real sequence in general metric spaces is considered. The main theory of real sequences in real metric space is also covered.
- The concept of continuity of real function in a metric space is defined. The main famous theory of continuous functions is covered.
- The concept of derivative of a real function and general theory of differentiation are studied. The concept of monotonic function is also covered.
- The Definition of Riemann-Stieltjes integrals and related basic theory of integration.

Course Objectives

Learning the basic and important properties of real filed

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1) Discuss fundamentals and basic properties of the real field, sequences, continuity of functions, differentiation, and integrability of real functions.

a2) Learn the concepts of Metric space, related concepts, and its importance in the theory of real functions.

B. Knowledge - Practical Application

b1) Demonstrate the fundamental concepts of real function theory in metric spacesb2) Able to construct proofs of some fundamental theorems in metric spaces.

C. Skills - Generic Problem Solving and Analytical Skills

c1) Use theory of real functions in metric spaces in constructing proofs and solving problems.

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

Lectures, discussions, and solving selected problems.

Assessment Methods

- Discussion and Interaction
- Mid Term Exam, Final exam, Class Assignment Quizzes,

	Course Contents						
Week	Day	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods	
1	Mon	1.5	a1, a3, b2.	The real field: concepts and properties	Lecturing, examples,	Quizzes Assignments	
1.	Wen	1.5	a1, a3, b2.	The real field: concepts and properties	Discussion		
2	Mon	1.5	a1, b1, b2	Metric space: Definition and examples	Lecturing, examples, Discussion	Quizzes Assignments	
2.	Wen	1.5	a1, b1, b2	Closure, Interior, limit points			
2	Mon	1.5	a1, a2. a3, b2,	Open and closed sets in metric spaces	Lecturing, examples,	Quizzes Assignments	
3.	Wen	1.5	a1, a2. a3, b2,	Definition of Compact Sets and examples	Discussion		
	Mon	1.5	a1, b2. a3	Related facts about compact sets	Lecturing, examples,	Quizzes Assignments	

4.	Wen	1.5	a1, b2. a3	Connected sets in metric spaces	Discussion	
	Mon	1.5	a1, b1,	Definition of Sequences and Basic properties	Lecturing, examples,	Assignments
5.	Wen	1.5	a1, b1,	Important theorems related to sequences	Discussion	
	Mon	1.5	a1, b2,	Tests of Series: constructions and proofs	Lecturing, examples,	Assignments
6.	Wen	1.5	a1, b2,	Continuity of functions in Metric spaces	Discussion	
7.	Mon	1.5	a1, b2. a3	Continuity of functions in Metric spaces	Lecturing,	Assignments
8.	Wen	1.5	a1, b2. a3	Continuity and compactness	examples, Discussion	
	Mon	1.5	a1, b2. a3	Continuity and connectedness	Lecturing, examples, Discussion	Mid -Exam
8.	Wen	1.5	a1, b2. a3	Differentiation of real functions	Discussion	Mid -Exam
	Mon	1.5	a2, a3	Monotone and convex functions	Lecturing, examples,	Assignments
9.	Wen	1.5	a2, a3	Riemann-Stieltjes integrals: Definitions: Darboux approach	Discussion	
10	Mon	1.5	a2, a3	Refinements of Partitions and their properties	Lecturing, examples,	Quizzes Assignments
10.	Wen	1.5	a2, a3	Riemann Definition of integral: Riemann equivalent definition	Discussion	
	Mon	1.5	a1, b2. a3	Practical examples and related consequences about Riemann – Stieltjes integrals	Lecturing, examples,	Quizzes Assignments
11.	Wen	1.5	a1, b2. a3	Important theorems	Discussion	
10	Mon	1.5	a1, b2. a3	Fundamental theorem of Integrals and related facts	Lecturing, examples, Discussion	Quizzes Assignments
12.	Wen	1.5	a1, b2. a3	Changing of variables and integration by parts		
	Mon	1.5	a1	Absolute continuity and bounded variation of real functions	Lecturing, examples,	Quizzes Assignments
13.	Wen	1.5	al	Absolute continuity and bounded variation of real functions	Discussion	0
	Mon	1.5	al	Step function and its integration	Lecturing, examples,	Quizzes Assignments
14.	Wen	1.5	a1	Step function and its integration	Discussion	

15.	Mon Wen	1.5 1.5	a1, a3 a1, a3	Differentiation under integral sign: Construction and proof Practical examples	Lecturing, examples, Discussion	Quizzes Assignments	
16.		Final Exam					

Infrastructure						
Textbook	Principles of Mathematical Analysis, By Walter Rudin					
References	 Basic Real Analysis, By Anthony W. Knapp, Birkhäuser Boston 2005 Mathematical Analysis, Tom Apostol, 2nd ed, Addison-Wesley 1974 					
Required reading						
Electronic materials						
Other						

Course Assessment Plan							
Assessment Method First (Midterm)							
		Grade	a1	a2	b1	b2	c1
		30	10	10	10		
Second (if applicable)		0					
Final Exam		50	5	5	5	15	20
Coursework							
Coursework assessment methods	Assignments						
	Case study						
	Discussion and interaction	5		5			
vork asso methods	Group work activities	-					
Lab tests and assignments		5			5		
Presentations		-					
U Quizzes		10				5	5
	Total	100	15	20	20	20	25
		Pla	giarisn	n			

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.

رئيس القسم د. طارق القواسمة مدرس المادة أ.د. محمد العمري