ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	College of Engineering					
Department	Renewable Energy Engineering			NQF level 7		
Course Title	Energy Conversion	Code	704363	Prerequisite	Differential & Integral (2) & Circuits (2)	
Credit Hours	3	Theory	3	Practical	0	
Course Leader	Dr. Jamal Alsadi	email	j.alsadi <u>@jadara.edu.jo</u>			
Lecturers	Dr. Amer Canaan Eng. Saif Bani Hani	emails	a.canaan@jadara.edu.jo			
Lecture time	Lecture time CI			Attendance	On Campos	
Semester	Summer 2021/2022	Production	2021	Updated		

Short Description

This course provides fundamentals of thermodynamics, chemistry, and transport physics applied to energy conversion systems. Analysis of energy conversion and storage in thermal, mechanical, nuclear, chemical, and electrochemical processes in power systems, with emphasis on efficiency, performance and environmental impact. Topics include fossil and nuclear power systems, solar energy, wind energy, geothermal energy, biomass energy, fuel cell and thermoelectric systems, CO₂ separation and capture.

Course Objectives

Upon successful completion of this course, student should be able to:

- 1. Understand the basic types of energy.
- 2. Understand the fundamental energy conversion from type to another, focusing on electrical energy at the end.
- 3. Understand the classification of energy, sources, utilization, economics, and terminology.
- 4. Understand the principal fuels for energy conversion
- 5. Able to know the different types production for thermal energy, fossil fuel.
- 7. Identify regular fossil fuel and renewable types of energy based on their environmental impact.

Learning Outcomes

A. Knowledge - Theoretical Understanding

a.1 Describe/understand basic analysis principles of carbon and non-carbon energy systems, environmental hazardous emissions, as well as the applications of Energy Conversion. (K1)

B. Knowledge - Practical Application

a.2. Compare various energy conversion systems in terms of cost, social acceptability as well as environmental consequences (K2)

C. Skills - Generic Problem Solving and Analytical Skills

b.1. Calculate energy conversion parameters, such as the high heating value of fuel. (S2).

D. Skills - Communication, ICT, and Numeracy

b.3 Write technical report and perform oral presentations of group work related to the application of engineering analysis techniques to the emerging energy conversion technologies of the 21st century (e.g., wind turbines, combined cycle power plants), and to understand the context in which the design of energy systems takes place.

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

A variety of learning methods will be used including the following:

- 1. Lecture, explanation, and readings
- 2. In-class discussion and cooperative learning activities
- 3. Solve problems
- 4. Quizzes & Homework

Assessment Methods

- Lecture, discussion
- Midterm exam (35), Final exam (50), Class Assignment, HW and attendance (15)

Course Contents						
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods	
1, 2	6	a1	Syllabus, Course Schedule; Energy classifications	The lectures, Discussions	Assignment #1 Week2	
3,4,5	9	a1, a2, b1	Principal fuels for energy conversion	The lectures, Discussions	Quiz #1 Week4	
6,7	4.5	a1, a2, b1, b3	Production of thermal energy	The lectures, Discussions	Assignment #2 Week7	
7,8	4.5	a1, a2, b1	Production of thermal energy	The lectures, Discussions		
9	3	a1, a2, c1, b1	Mid-Exam + Review		Written exams	
10	3	a1, a2, b1	Fossil-fuel systems	The lectures, Discussions		
11	3	a1, a2, b1, b3	Production of mechanical energy	The lectures, Discussions	Assignment #3	

12,13	6	a1, a2, b1	Production of electrical energy	The lectures, Discussions	
14,15	6	a1, a2, b1	Energy storage	The lectures, Discussions	Quiz #3 Week14
16	3	a1, a2, b1	Review, and final exam	The lectures, Discussions	Written exams

Infrastructure				
Textbook	Principles of Energy Conversion, Archie W. Culp, Jr			
1. Energy Conversion, Edited by D.Y. Goswami and F. Kreith, CRO Press, 2018. 2. G.N. Tiwari and R.K. Mishra, Advanced Renewable Energy Sou RSC Publishing, 2020				
Required reading				
Electronic materials				
Other	Recommended to be General Chemistry, Thermodynamics, and Economics and Management of Energy Systems as a Prerequisite			

Course Assessment Plan						
Assessment Method		Grade	CLOs			
			a1	a2	b1	b3
First (Midterm)		30%	10	5	10	5
Second (if applicable)						
Final Exam		50%	10	10	20	10
Cours	Coursework					
nt	Assignments			2.5	2.5	
sme	Case study					
sses	Discussion and interaction					
vork ass methods	Group work activities					10
ewo	Lab tests and assignments					
Coursework assessment methods	Presentations					
	Quizzes		20	17.5	2.5	
Total		100%	25	15	35	25

Plagiarism, Attendance and Expectations, Make-up Exam Policy

Plagiarism: Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the

coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.

Attendance and Expectations: Attendance is expected, it is extremely important that students attend the class regularly. Irregular attendance always results in poor or mediocre performance. Excused absences will be given for documented medical reasons, OF related travel or job interview travel. Documentation must be in the form of a doctor's note, or letter from the sponsor of the travel.

Make-up Exam Policy: There will be no make-up exams. Unless there is a documentable extreme medical or family emergency, you must contact the instructor prior to the exam or no credit will be given for a missed exam. It is the student's responsibility to make sure he/she is available to take the exam.