

ref# FR/P1/P1/1/v1

COURSE DESCRIPTION / SYLLABUS

Faculty	Engineering					
Department	Renewable Energy En	ngineering		NQF level	7	
Course Title	Design of Renewable Energy Systems	Code	703437 Prerequisite			
Credit Hours	3 credits	Theory	3	Practical	0	
Course Leader	Dr. Amer Al-Canaan	Email	Email: a.alcanaan@jadara.edu.jo			
Lecturers	Dr. Amer Al-Canaan	Emails	Email: a.alcanaan@jadara.edu.jo			
Lecture time11:30- 13:00 Monday, wednesdayClassroomD 3		D 310				
Semester	First semester 2022/2023	Production	March 2022	Updated	October 2022	

Short Description

This course equips students with the information and abilities needed to design renewable energy systems, such as photovoltaic systems (grid-connected and off-grid). Students will apply the fundamentals of electric and renewable energies, such as the science of solar radiation and solar movement. The course will also introduce students to perform engineering design and select different renewable energy components. The students will also gain knowledge through working on various simulation software allowing them to calculate and estimate the solar irradiance, tilt angle, electrical loads and capacity of photovoltaic systems, as well as identify the energy units.

Course Objectives

- 1. Understand the principles of design and operation of various photovoltaic systems and perform engineering calculations related to these systems.
- 2. Learn about the methods of installing solar panels.
- 3. Study the various factors that affect the productivity of the PV panels.
- 4. The ability to design all types and sizes of on-grid and off-grid systems using manual calculations and various programs related to renewable energy.
- 5. The ability to calculate the quantities and economic feasibility of projects and prepare financial and technical reports
- 6. The ability to understand the most important pros and cons and the importance of the field visit and the requirements to fullfil the customer needs.

Course Intended Learning Outcomes (CILOs)

A. Knowledge - Theoretical Understanding

a.1 Understand the principles of design and operation of various photovoltaic systems and perform

engineering calculations related to these systems. (K1)

B. Knowledge – Practical Applications

a.2 The ability to design on-grid and off-grid PV systems using manual calculations and various simulation software related to renewable energy. (K2)

C. Skills - Generic Problem Solving and Analytical Skills

b.1 The ability to calculate the PV quantities (voltage, power, number of panels, cable size, battery ratings, etc.). (S1)

D. Skills - Communication, ICT, and Numeracy

b.3 Work in groups and **Write** technical **report** and perform **oral presentations** related to designing solar energy systems and economic feasibility of projects. (S3)

Teaching and Learning Methods

E-learning, Engaged learning, Problem-based learning (PBL), and Project-based learning:

Assessment Methods

Class Participation and Assignments

Term Project/Presentation

HW

Quizzes

Midterm Exam

Final Exam

Course Contents							
Week	Hour s	CLOs	Topics	Teaching & Learning Methods	Assessment Methods		
1	3	al	Introduction				
16-19	5	ui					
Oct.							
			Sources and mechanisms of				
	2 23-26 Oct.	3 a1	generating electric energy				
2			2. Types of renewable energy and				
23-26			their sources				
Oct.			3. The principle of energy				
			conservation and the law of energy,				
			power and peak power				

			About colon or energies To 1		
			About solar energy in Jordan		
3			Types of solar energy and their		
30		a2	applications		
Oct2			The sun and the earth and their		
Nov.			movement		
			Longitude and latitude		
			Solar radiation		
4	3	a1, a2	Sun Position Diagram		Quiz #1
6-9	5	u1, u2	Load estimation		
Nov.					
			Types and components of		
			photovoltaic systems		
5	2	a1,	Electric bills and price		Group work
13-16	3	b1, b3	.The equivalent circuit of a solar cell		#1
Nov.		01,05	.Solar panel data sheet		
			.Solar panel protections		
			Factors affecting solar panels		
6		a1,	The latest technology in the		
		-	manufacture of solar panels		Ouiz #2
20-23		b1, b3	Introduction to solar inverters		Quiz #2
Nov.					
7		a1, a2,	MID term Exam		
27-30		b1			
Nov.					
8	2	a1, a2,	Cables and circuit breakers		
4-7	3	b1	Working on PVsyst software		
Dec.		01			
9			Solving problems		
11-14	3	a2	Solving problems		Quiz #3
Dec.					
		-1 -2			
10	3	a1, a2,			
18-21	_	b1			
Dec.					
11	3	a1, a2,	Cables and circuit breakers		Group work
25-28	5	b1, b3	Working on PVsyst software		#2
Dec.					
			Practical application in the laboratory		
			(installing solar panels with steel		
12	2	a1, a2,	structures, calculating the angle of		
1-4	3	b1	inclination and angle of orientation,		
Jan.			and identifying electrical		
			installations)		
			Working on Sketchup software		
			Practical application in the laboratory		
			(installing solar panels with steel		
13		a1, a2,	structures, calculating the angle of		
8-11	3		inclination and angle of orientation,		Quiz #4
		b1	-		
Jan.			and identifying electrical		
			installations)		
			Working on Sketchup software		
			Practical application in the laboratory		
			(installing solar panels with steel		
14	3	a1, a2,	structures, calculating the angle of		
15-18	5	b1	inclination and angle of orientation,		
Jan.			and identifying electrical		
			installations)		
			Working on Sketchup software		
		_	• •	122	Dege 2 of F

15, 16 21 Jan 02	3	a1, a2, b1	Review, Final Exam (50 % of assessment)	
Feb.				

Infrastructure			
Textbook	1.Solar electricity design, simple practical guide to design the PV system, Michael Boxwell, 2017		
References	Introducing Renewable Energy by Paul Matthews, published by Greenstream Publishing		
Required reading			
Electronic materials	Ppt, book, lectures, charts, tables		

Course Assessment Plan							
	Assessment Method	Grade	CLOs				
			a1	a2	b1	b3	
	First (Midterm)	30%	12	7	11		
	Second (if applicable)						
	Final Exam	50%	20	15	15		
	Coursework	20%		1	1		
ls	Assignments						
ethod	Case study						
Coursework assessment methods	Discussion and interaction/participation						
asses	Group work activities					10	
work	Lab tests and assignments						
ourse	Presentations/attendance					_	
С	Quizzes			5	5		
	Total	100%	32	27	31	10	

Plagiarism Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Design of Renewable Energy Systems, Dr. Amer Al-Canaan, Automn 2022

Plagiarism is different from group work in which several individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. To allow proper assessment that this is indeed the case, you must adhere strictly to the coursework requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.