

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Faculty of Engineering					
Department	Communication and Computer Engineering			NQF level	7	
Course Title	Digital Communication	Code	701452 Prerequisite 701451			
Credit Hours	3	Theory	3 Practical 0			
Course Leader	Prof. Dr. Igried Khawaldeh	email	igried.a@jadara.edu.jo			
Lecturers	Dr. Amer Al-Canaan	emails	a.alcanaan@jadara.edu.jo			
Lecture time	13:00_14:30 (Sunday- Wednesday)	Classroom	D 310			
Semester	First 2022/2023	Production	2017	Updated	October 2022	

Short Description

This course is an introduction to the basic principles of digital communication systems. The topics in this course include the mathematical foundation of decomposing the systems into separately designed source encoding (such as PAM, ASK, FSK, QPSK, QAM, BPSK, and BFSK) and channel encoding (for error detection/correction). We also introduce the principles and some commonly used algorithms to convert continuous-time waveforms into bits, and vice versa. We give a comprehensive introduction to the basics of information theory, a rather basic treatment of Fourier transforms and the sampling theorem.

Course Objectives

- An ability to convert analog signals to digital signals (sampling, quantization, and encoding) and study the different encoding techniques (PCM, DM, D-EM, DPCM).
- An ability to analyze the effect of noise and inter-symbol interference on data transmission and the techniques to minimize them (matched filter, correlation receiver, and maximum likelihood decoder, and equalizers).
- An ability to compute the bandwidth and the probability of error for different digital modulation techniques (ASK, FSK, PSK, QPSK, QAM) assuming AWGN.
- An ability to evaluate, compare the performance of different communication systems according to transmission bandwidth, transmitted power (noise performance) and system complexity.

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1. **Understand** the building block diagram of digital communication system. Digital Signals mathematically and understand how to perform mathematical operations to convert analogue signals to digital signals. (K1)

B. Knowledge - Practical Application

a2. Understand different encoding techniques including PCM, DM, D-EM and DPCM. (K2)

C. Skills - Generic Problem Solving and Analytical Skills

b1. **Analyse** communication signals mathematically and **calculate** the effect of noise and Inter-Symbol Interference (ISI) on data transmission and the techniques to minimise them (matched filter, correlation receiver, and maximum likelihood decoder, and equalizers). (S1)

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

• Lecture, lab and discussion

Assessment Methods

- Lecture, lab and discussion
- Midterm exam, Final exam, Class Assignment and Project
- Observation of student contribution in team work and project presentation

Course Contents					
Week	Hour s	CILOs	Topics	Teaching & Learning Methods	Assessment Methods
1 16-19 Oct.	12	a1, a2, b1	Syllabus, Course Schedule; Introduction to communication systems	Lectures and discussion	
2 23-26 Oct.	12	a1, a2, b1	Chapter 6: Introduction to Information Theory and Source coding: Modeling of information sources, measure of information, joint and conditional entropy, mutual and average mutual information, source coding theorem, source coding algorithms.	Lectures and discussion	
3 30 Oct 2 Nov.	1.5		Chapter 6 (cont.): Introduction to Information Theory and Source coding:	Lectures and discussion	
4 6-9 Nov	12	a1, a2, b1	Chapter 6 (cont.): Modeling of information sources, measure of information, joint and conditional entropy,	Lectures and discussion	
5 13-16 Nov.	6	a1, a2, b1	Chapter 6 (cont.): mutual and average mutual information, source coding theorem, source coding algorithms. Quantization, direct quantization, companded quantization.	Lectures and discussion	Assignment #1, Quiz #1
6 20-23 Nov.			Chapter 6 (cont.): Waveform coding, pulse code modulation, delta modulation, noise analysis in PCM and DM systems.	Lectures and discussion	Assignment #2, Quiz #2
7 27-30 Nov.			Chapter 7: Digital Passband and Bandpass Transmission Through AWGN Channel. Midterm Exam (30 % of assessment)	Lectures and discussion	Midterm exam
8 4-7 Dec.			Chapter 7 (cont.):Digital modulation schemes (ASK, PSK,DPSK, QAM, FSK): signal space	Lectures and discussion	

	representation, baseband and bandpass representation of digitally modulated signals.		
9 11-14 Dec.	Chapter 7 (cont.): Optimum receivers for AWGN channels: Detection principles for digital communication signals in noise,	Lectures and discussion	Assignment #3
10 18-21 Dec.	Chapter 7 (cont.): correlation and matched filter receivers, signal space concepts, maximum a posteriori receiver, maximum likelihood receivers, coherent and non-coherent detection, bit error rate analysis.	Lectures and discussion	Quiz #3
11 25-28 Dec.	Chapter 8: Digital Transmission Through Bandlimited AWGN Channels: Power spectra of digitally modulated signals.	Lectures and discussion	
12 1-4 Jan.	Chapter 8 (cont.): Signal design of bandlimited channels for zero ISI-the Nyquist criterion and controlled ISI-partial response signals. System design in the presence of channel distortion, optimum transmitting and receiving Filters and Channel Equalization, ISI analysis.	Lectures and discussion	Assignment #4
13 8-11 Jan.	Chapter 9: Introduction Error Control coding: Linear block codes, decoding and performance of linear block codes, Cyclic codes, the structure of cyclic codes, decoding and performance of cyclic codes, Convolutional codes.	Lectures and discussion	Quiz #4
14 15-18 Jan.	Chapter 9 (cont.): Introduction Error Control coding: Linear block codes, decoding and performance of linear block codes, Cyclic codes, the structure of cyclic codes, decoding and performance of cyclic codes, Convolutional codes.	Lectures and discussion	
15, 16 21 Jan 02 Feb.	Final Exam (50 % of assessment)		

Infrastructure				
Textbook	1- Digital & Analog Communication Systems, by Couch, Leon, Publisher: Pearson, 2016.			
References1. Communication Systems Engineering, John Proakis and 'asoud Salehi, 2 nd Ed., 2002.2. Alan V. OPPenheim, A. S. Wlisky, Signals and Systems, 2nd Edition, Prentice Hall				
Required reading				
Electronic materials	PDF, Power Point Lectures			
Other				

Assossment Method	Creada	2		
Assessment Methou	Graue	a1	a2	b1
First (Midterm)	30	10	10	10

Secon	d (if applicable)				
Final	Exam	50	10	20	20
Cours	ework				
nt	Assignments	10		5	5
oursework assessme methods	Case study				
	Discussion and interaction				
	Group work activities				
	Lab tests and assignments				
	Presentations				
Ŭ	Quizzes	10		5	5
Total		100	20	40	40

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.