Jadara University

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Mathematics			NQF level	6	
Course Title	Logic and Set theory	Code	505245 Prerequisite 505111			
Credit Hours	3	Theory	3	Practical	0	
Course Leader	Prof. Dr. M.W. Alomari	email	malomari@jadara.edu.jo			
Lecturers	Prof. Dr. M.W. Alomari	emails	malomari@jadara.edu.jo			
Lecture time	10:00-11:30 Sun -Tue	Classroom	D307	Attendance		
Semester	First Semester	Production	2008	Updated	2023	

Short Description

This course demonstrates the development of mathematical thought through basic logical structures and the concepts of classes and sets, Functions, Finite and Infinite Sets, Denumerable and non-denumerable Sets, Cardinal numbers, The axiom of choice.

Course Objectives

1-Students who successfully complete this course will be able to understand and apply the basic axioms and concepts of set theory.

2- They will be able to read, write and present theorems and proofs in higher mathematics.

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1. Demonstrate the basic concepts and theorems of set theory.

B. Knowledge - Practical Application

a2. Explain and discuss the cardinality of a set and its subsets.

C. Skills - Generic Problem Solving and Analytical Skills

b1. Apply techniques to solve problems.

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

c1. Write mathematical proofs in a clear and concise manner.

Teaching and Learning Methods

E-learning

Lecture, Group work, and discussion

Assessment Methods

- Exams
- Quizzes
- Assignments and Class Assignments

Course Contents							
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods		
1	3	al	Review. The Concept of Set, Some Basic Notations and Definitions	By lectures, discussions, and solving selected	Quiz, Exam		
	2		Eurotions (or Mappings):	problems			
2	5	a1, b1	definitions and notations	By lectures, discussions, and	Quiz,		
2			Equality of functions	problems	Exam		
	3	- 1	Inverse function, composition of functions.	By lectures, discussions, and	Quiz,		
3		a1	Types of functions: injective, surjective and bijective.	solving selected problems	Exam		
	3	b1	Solving problems concerning bijective functions	By lectures, discussions, and	Quiz,		
4			Composition of one to one, onto, and bijective functions	solving selected problems	Exam		
5	3	a2	The existence of the inverse function	By lectures, discussions, and	Quiz,		
5			the image and the inverse image	problems	Exam		
	3	a1 b1	Solving different problems	By lectures, discussions, and	Quiz,		
6		ui, 01	borring afferent procrems	solving selected problems	Exam		
_	3	a1. a2	Equipotent sets, equipotent as an	By lectures, discussions, and	Quiz,		
		,	equivalence relations	solving selected problems	Exam		
0	3	a1.b1	Finite sets.	By lectures, discussions, and	Quiz,		
8		,01		solving selected problems	Exam s		
9	3	b1	Infinite Sets	By lectures, discussions, and	Quiz, Exam		

	3			solving selected problems		
10		al	Infinite Sets (Cont.)	By lectures, discussions, and solving selected problems	Quiz, Exam	
11	3	al	Denumerable sets.	By lectures, discussions, and solving selected problems	Assignment Quiz, Exam	
12	3	a1, b1	countable sets	By lectures, discussions, and solving selected problems	Assignment Quiz, Exam	
13	3	a2, b1	Cardinal Numbers	By lectures, discussions, and solving selected problems	Assignment Quiz, Exam	
14	3	a1, a2	The Ordering of Cardinal Numbers	By lectures, discussions, and solving selected problems	Assignment Quiz, Exam	
15	3	a1, b1	The axiom of choice	By lectures, discussions, and solving selected problems	Assignment Quiz, Exam	
16	2	Final Exam				

Infrastructure					
Textbook	Jebril, I. H., Dutta, H., & Cho, I. (2021). <i>Concise Introduction to Logic and Set Theory</i> . CRC Press.				
References	Smith, D., Eggen, M., & Andre, R. S. (2014). <i>A transition to advanced mathematics</i> . Cengage Learning.				
Required reading					
Electronic materials					
Other					

Course Assessment Plan						
A gaogement Mothed	Grade	CLOs				
Assessment Method		a1	a2	b1	c1	
First (Midterm)	30	12	0	6	12	
Second (if applicable)						

Final	Exam	50	12	6	12	20
Cours	sework					
nt	Assignments	10	3	0	3	4
sme	Case study					
Coursework asses: methods	Discussion and interaction	5	0	5	0	0
	Group work activities					
	Lab tests and assignments					
	Presentations					
	Quizzes	5				5
Total		100	27	11	21	41

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.