Jadara University

COURSE DESCRIPTIONS

faculty	Pharmacy				
Department	Pharmacy	NQF leve	1		
Course Title	Pharmaceutical Technology	Code	901446	Prerequisit	e PHC 443
Credit Hours	3	Theory	3	Practica	1 -
Course Leader	Dr Nadia Ghazal	email	n.ghazal@jadara.edu.jo		
Lecturers	Dr Nadia Ghazal	emails	n.ghazal@jadara.edu.jo		
Lecture time	Section 1: Monday- Wednesday Section1- 7:30-9:00 pm	Classroom	Online	Attendance	Obligatory
	Section2: Sunday- Tuesday				
	Section1- 7:30-9:00 pm				
Semester	First 2023-2024	Production		Updated	Oct 2023
Type of teaching	☐ Face to Face ☐	Blended	☐ Onlir	ne	

Short Description

This course deals with applications of physico-chemical principles in the design of solid dosage forms (powders and granules, tablets, coated tablets, and capsules), that is covered under the pre-formulation studies conducted during product development.

On the completion of this course ,the student will be able also to discuss the principles of the equipment used in different pharmaceutical unit operations for each process , and the effect of the processes on the quality of the manufactured products using these equipment.

Course Objectives

This course aims to familiarize the students with pre-formulation studies, and manufacturing of solid dosage forms. It aims to develop students knowledge of the fundamental physicochemical properties of drugs and asses their role and applications in solid dosage forms.

At the end of the course; students shall be able to categorize solid dosage forms and solve problems encountered during their development and manufacturing.

Learning Outcomes

A. Knowledge - Theoretical Understanding

- a1. Discuss basic principles of Pre-formulation studies including physicochemical properties that affects materials behavior during product development and manufacturing
- a2. Discuss concepts, mechanisms, methods of mixing, granulation, milling, compression, drying, encapsulation, and coating .
- a3. Investigate the different properties such as particle size, surface area, flow properties, solubility, and stability of an active drug substance to show no barrier to product formulation

B. Knowledge - Practical Application

- b1. Discuss equipment of mixing, granulation, milling, compression, encapsulation, and coating .Define design and mechanism of action of these equipment as unite operation in pharmaceutical practice.
- b2. Correlate equipment design with drug product characteristics

C. Skills - Generic Problem Solving and Analytical Skills

- c1. Evaluate different properties of solid dosage forms such as hardness, friability, content uniformity, dissolution, disintegration, and weight variation
- c2. Identify and solve problems faced during manufacturing of solid dosage forms

D. Skills - Communication, ICT, and Numeracy

- B4. To work in groups and teams
- B5. To use computer and internet to extract information and knowledge

E. Competence: Autonomy, Responsibility, and Context

C1. use information technology tools.

Teaching and Learning Methods

- Lectures.
- Research projects and information collection.
- discussion during lectures and tutorial
- self-learning (presenting scientific proposal)

Assessment Methods

Presentations, research, quizzes, case studies, Mid and Final exam

Course Contents							
Week	Hours	CLOs	Topics	Teaching & Learning Opics Methods			
1.	3	A1, A3	Pre-formulation studies	,			
2.	3	A2, b1, b2	Mixing Lectures, discussion during lectures and tutorial self-learning		Assignments, Mid and final exams		
3.	3	A2, b1, b2	Mixing	Lectures, discussion during lectures and tutorial self-learning	Assignments, Mid and final exams		
4.	3	A2, b1, b2, c1,c2	Granulation	Lectures, discussion during lectures and tutorial self-learning	Assignments, Mid and final exams		
5.	3	A2, b1, b2, c1,c2	Granulation	Lectures, discussion during lectures and tutorial self-learning	Assignments, Mid and final exams		
6.	3	A2, b1, b2, c1,c2	Milling	Lectures, discussion during lectures and tutorial self-learning	Assignments, Mid and final exams		
	Mid Term Exam						
7.	3	A2, b1, b2, c1,c2	Milling	Lectures, discussion during lectures and tutorial self-learning	Assignments, Mid and final exams		
8.	3	A2, b1, b2, c1,c2	Drying	Lectures, discussion during lectures and tutorial self-learning	Assignments, Mid and final exams		
9.	3	A2, b1, b2, c1,c2	Powder Flow and Compression	Lectures, discussion during lectures and tutorial self-learning	Assignments , Mid and final exams		
10.	3	A2, b1, b2, c1,c2	Capsules	Lectures, discussion during lectures and tutorial self-learning	Assignments , Mid and final exams		
11.	3	A2, b1, b2, c1,c2	Coating	Lectures, discussion during lectures and tutorial self-learning	Assignments , Mid and final exams		

Accessment Mathed	Crada	*CILOs						
Assessment Method	Grade	a.1	a.2	a.3	b.1	b.2	c.1	c.2
First (or Midterm) Exam	30	5	5	5	5	5	2.5	2.5
Final Exam	40	2.5	2.5	2.5	7.5	5	10	10
Coursework	30	5		5		5	5	10
Assessment methods								
Assignments		1		1				2
Case study						2		
Discussion and interaction								1
Group work activities		2		2				
Lab tests and assignments								
Presentations		2				3		
Quizzes				2	2	2		5
Total	100	45		15	55			

^{*}CILOs stands for the "course intended learning outcomes", which are intended to feed-up to the PILOS, the "program intended learning outcomes"

	Textbook & References
Text Book	Aulton's Pharmaceutics The Design and Manufacture of Medicines 6th Edition - 2021 Editors: Kevin Taylor, Michael Aulton ISBN :9780702081545
References	1- Title: Martin's Physical Pharmacy and Pharmaceutical Sciences Author: Patrick J. Sinko Publisher: Wolters Kluwer Year: 2023 ISBN/ISSN: 9781975174811 Edition:8th Edition
	2- Title: Pharmaceutical Dosage Forms and Drug Delivery Systems Author(s): Loyd V. Allen, Jr., Nicolas G. Popovich & Howard C. Ansel Publisher: Wolters Kluwer Year:2021 ISBN/ISSN:978-1975171773 Edition: 12th Edition
	3- Title: Lachman/ Lieberman's The Theory and Practice of Industrial Pharmacy By R K Khar; S P Vyas; Farhan J Ahmed; Gauravk Jalin. Publisher: New Delhi CBS Year:2015 ISBN/ISSN:978-8123922898 Edition:4th edition

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.