Jadara University

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Mathematics			NQF level	6	
Course Title	Numerical Analysis I	Code	505321 Prerequisite 505102, s53241			
Credit Hours	3	Theory	3 Practical 0			
Course Leader	Dr. Osama Ala'yed	email	alayedo@jadara.edu.jo			
Lecturers	Dr. Osama Ala'yed Dr. Areen Alkhateeb	emails	alayedo@jadara.edu.jo Areen.K@jadara.edu.jo			
Lecture time	18:00- 19:30	Classroom	Distance Learning			
Semester	First Semester	Production	2012 Updated 2021		2021	

Short Description

Error Analysis, Numerical solutions of linear algebraic equations (Direct and Iterative methods such as Jacobi, Gauss – Seidel, SOR methods), Numerical solutions of non – linear equations, Interpolation, Approximation, Difference equations, Special Types of Matrices, Norms of vectors and Matrices, Eigenvalues and Eigenvectors.

Course Objectives

Upon successful completion of the course, students will be able to

1) Solve the nonlinear equations.

2) Solve the linear system by direct and Iterative methods.

3) Interpolate the values of a function.

4) Compute Norms of vectors and Matrices.

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1. Enumerate types of errors and their significance in numerical computation.

B. Knowledge - Practical Application

a2. Estimate error bounds and stopping criteria of some numerical methods.

C. Skills - Generic Problem Solving and Analytical Skills

b1. Compute interpolating polynomials of any given functions through arbitrary points.

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

c1. Solve linear, non-linear, and system of linear equations with appropriate numerical methods.

Teaching and Learning Methods

- E-learning.
- Distance learning using (Microsoft Teams).
- Problem based learning (PBL),
- Direct students to self-learning through textbooks, library, e-library, and research papers.
- Tutorials, and discussion.

Assessment Methods

Participation questions, quizzes, assignments, and exams

Course Contents						
Week	Hours	CLOs	Learning		Assessment Methods	
1	3	a1, b1	Review of Calculus	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
2	3	a1, a2,	Error Analysis	Lectures, discussions, and	Participation question,	
2		c1	Bisection method	solving selected problems	quiz, homework	
3 3	a2, c1	Fixed-Point iteration	Lectures, discussions, and	Participation question,		
		Newton's Method	solving selected problems	quiz, homework		
4	3	a2, b1,	Secant Method	Lectures, discussions, and	Participation question,	
4		c1	Zeroes of Polynomials	solving selected problems	quiz, homework	
5	3	a2, b1, c1	Interpolation and the Lagrange polynomial	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
6	3	a2, b1, c1	Divided Differences	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	

7	3	a2, b1, c1	Hermit Interpolation	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
8	3	c1	Special Types of Matrices Midterm Exam 30%	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
9	3	c1	Leading Principal Submatrix positive definite	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
10	3	c1	Norms of vectors and Matrices	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
11	3	c1	Jacobi method	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
12	3	c1	Gauss-Seidel method	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
13	3	c1	SOR method	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
14	3	c1	Comparing between Jacobi method & Gauss- Seidel method and SOR method	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
15	3	a1, a2, b1, c1	Review			
16	Final Exam 50%					

Infrastructure				
Torthool	Burden, R. L. & Faires, J. D. (2016). Numerical analysis, 10th			
Textbook	ed. Cengage Learning			

References	 Cheney, E. W. & Kincaid, D. R. (2012). <i>Numerical mathematics</i> <i>and computing</i>. Cengage Learning. Conte, S. D., & De Boor, C. (2018). <i>Elementary numerical</i> <i>analysis: an algorithmic approach</i>. Society for Industrial and Applied Mathematics
Required reading	
Electronic materials	
Other	

Course Assessment Plan							
Assessment Method		Crada	CLOs				
		Grade	a1	a2	b1	c1	
First(Midterm)		30	7	8	7	8	
Second (if applicable)							
Final Exam		50	12	13	12	13	
Coursework		20					
nt	Assignments	10	2	3	2	3	
sme	Case study	-					
sses ds	Discussion and interaction	5	2	1	1	1	
Coursework assessment methods	Group work activities	-					
	Labtests and assignments	-					
	Presentations	-					
	Quizzes	5	0	0	0	5	
	Total	100	23	25	22	30	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code). Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.