

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Allied Medical Sciences						
Department	Medical Laboratory Science			NQF level	6		
Course Title	Molecular Biology	Code	902228 Prerequisite 891108		891108		
Credit Hours	3	Theory	2 Practical 3		3		
Course Leader	Ibrahim Odat	Email:	Ibrahim.odat@jadara.edu.jo				
Lecturers	Ibrahim Odat	Email:	Ibrahim.odat@jadara.edu.jo				
Lecture time	Sunday, Tuesday @ 11:30-13:00	Classroom	D008				
Semester	Spring Semester _2022/2023	Production	2019	Updated	2023		

Short Description

This course provides the student with the basics, fundamentals and concepts the of molecular biology. It discusses nucleic acids and chromosomes structures and packaging, DNA topology, RNA secondary and tertiary structure, events of DNA replication, mechanisms of DNA proofreading and mismatch repair, events of DNA transcription and RNA synthesis as well as post-translational modifications and finally RNA translation and proteins synthesis cellular processes.

Course Objectives

At the end of the semester, students are expected to develop an understanding of certain core concepts of molecular biology including DNA, RNA and chromosomal structure and DNA packaging as well as information flow processes and gene expression and regulation.

Course Intended Learning Outcomes (CILOs)

A. Knowledge - Theoretical Understanding

a1. Show the structure of the genetic material in different types of cells. (K1)

a2. Explain the process of DNA replication/synthesis in the cells and the regulatory

elements. (K1)

a3. Explain the process of genetic information flow and gene expression including events of DNA transcription, RNA translation as well as the regulatory elements of these processes. **(K1)**

B. Knowledge - Practical Application

a4. Identify the principles of the different molecular biology techniques. (K1)

C. Skills - Generic Problem Solving and Analytical Skills

b1. List the differences between DNA replication, DNA transcription and RNA translation. **(S1)**

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

c1. Compile the process of gene expression in prokaryotic and eukaryotic types of cells. (C1)

Teaching and Learning Methods

The teaching method utilizes PowerPoint presentation and animated simulations of topics under discussion.

Questions and answers approach centered on enhancing student critical thinking and problemsolving skills is used.

Practical session emphasis is placed on individual and teamwork, which designed to enhance and promote the practical skills and handling nucleic acids in the laboratory.

Theoretical Course Content							
Week	Hours	CILOs	Topics	Teaching & Learning Methods	Assessment Methods		
1+2	4	al	The Structure of DNA	Lecture and Group Discussion	Quizzes + MidExams		
3	2	al	The Structure of RNA	Lecture and Group Discussion	Quizzes + MidExams		
4	2	al	Genome Structure, Chromatin and the Nucleosome	Lecture and Group Discussion	Quizzes + MidExams		
5+6	4	a2, c1	The Replication of DNALecture and Group Discussion		Quizzes + MidExams		
7	1	-	Midterm exam				
7	1	a2	The Mutability and Repair of DNA	Lecture and Group Discussion	Quizzes + MidExams		
8	2	a3, c1	Mechanisms of DNA Transcription and RNA synthesis	Lecture and Group Discussion	Quizzes + Final Exams		
9	2	a3, c1	Posttranscriptional modifications	Lecture and Group Discussion	Quizzes + Final Exams		
10	2	a3, c1	Regularity mechanisms of DNA transcription in prokaryotes	Lecture and Group Discussion	Quizzes + Final Exams		
11	2	a3, c1	Regularity mechanisms of DNA transcription in eukaryotes	Lecture and Group Discussion	Quizzes + Final Exams		
12	2	a3, c1	Translation and polypeptide synthesis	Lecture and Group Discussion	Quizzes + Final Exams		
13	2	a3, c1	Posttranslational modifications	Lecture and Group Discussion	Quizzes + Final Exams		
14	2		Revision	Group Discussion			

	15 & 16	2	Final exams			
--	------------	---	-------------	--	--	--

Practical Course Content						
Week	Hours	CILOs	Topics	Teaching & Learning Methods	Assessment Methods	
2	3	a4, b1	Nucleic acids extraction from animal cells	Group practical session	Lab report + Final Exams	
3	3	a4, b1	Nucleic acids extraction from bacterial cells	Group practical session	Lab report + Final Exams	
4	3	a4, b1	Nucleic acids extraction from blood	Group practical session	Lab report + Final Exams	
5	3	a4, b1	Agarose gel preparation	Group practical session	Lab report + Final Exams	
6	3	a4, b1	DNA digestion with restriction enzymes	Group practical session	Lab report + Final Exams	
7	1	-	Midterm exam			
8	3	a4, b1	Agarose gel electrophoresis	Group practical session	Lab report + Final Exams	
9	3	a4, b1	Agarose gel staining and visualization	Group practical session	Lab report + Final Exams	
10	3	a4, b1	PCR	Group practical session	Lab report + Final Exams	
11	3	a4, b1	Southern blot	Group practical session	Lab report + Final Exams	
12 Practical Final exams						

Infrastructure				
Textbook	1. Diagnostic Molecular Biology, Chang-Hui Shen, 1 st edition, 2019.			
ReferencesMolecular Diagnostics: Fundamentals, Methods and Clinical A Lela Buckingham and Maribeth Flaws, 2007.				
Required reading	Handout			
Electronic materials	Powerpoint slides are uploaded into the Jadara University e-learning system.			
Others				

Course Assessment Plan								
Assessment Method		Creada	CILOs					
		Grade	a1	a2	a3	a4	b1	c1
First (Midterm)		30%	5	5		5	5	10
Second	d (if applicable)							
Final Exam		50%	10	10	10	5	5	10
Course	ework	20%						
spo	Assignments							
methc	Case study							
ment	Discussion and interaction							
SSessi	Group work activities							
ork a	Lab tests and assignments	10%				5	5	
Coursework assessment methods	Presentations							
	Quizzes	10%	2	2	2			4
Total		100%	17	17	12	15	15	24

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code). Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.