ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Engineering					
Department	Renewable Energy E	Ingineering	NQF level	7		
Course Title	Water Desalination Using Solar Energy	Code	703548 Prerequisite -		-	
Credit Hours	3 credits	Theory	100% Practical 0		0	
Course Leader	Dr. Amer Al-Canaan	E-mail	a.alcanaan@jadara.edu.jo			
Lecturers	Dr. Amer Al-Canaan	E-mails	a.alcanaan@jadara.edu.jo			
Lecture time	13:00- 14:30 Monday, Wednesday	Classroom	D302	Attendance	D302	
Semester	Second 2021/2022	Production	October 2021	Updated	February 2022	

Short Description

The course is a requirement for level 5 renewable energy engineering students. It introduces the basic principles and analysis and Describe the desalination and pretreatment of water.

Course Objectives

- 1. Understand the desalination and pretreatment of water.
- 2. Understand the properties of saline water and solutions
- 3. Analysis of desalination processes.
- 4. Understand various design desalination systems
- 5. Understand water desalination using solar energy
- 6. Analysis of desalination systems, economical feasibility study of desalination processes

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1. Learn/Understand the basic concepts of water desalination and solar energy, the various processes of desalination, fundamentals of thermodynamics and electrochemistry and recent advances in desalination technologies. (K1)

B. Knowledge - Practical Application

a.2 Compare water desalination processes and technologies in terms of given criteria (quality, complexity, advantages, energy consumption) and explain their principle of operation. (K2)

C. Skills - Generic Problem Solving and Analytical Skills

b1. Calculate the theoretical solar power that can be collected on given surface area, energy,

current or other related quantities to water desalination processes. (S1)

D. Skills - Communication, ICT, and Numeracy

b3. Write technical **report** and **perform** oral **presentations** in teamwork related to water desalination technologies. (S3)

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

• Online lectures, Group work and discussion

Assessment Methods

- Lecture, lab, Group work and discussion
- Midterm exam, Final exam, Class Assignment and group work.
- Observation of student contribution in teamwork and/or project presentations

Course Contents						
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods	
1.	3	a1, a2	Historical applications of desalination and pretreatment of water	eLearning, online discussions/lectures		
2.	3	a1, a2	Introduction and Basic Concepts of desalination and pretreatment of water, Chapter 1	eLearning, online discussions/lectures		
3.	3	a1, a2, b1	The properties of water and solutions, Chapter 2	eLearning, online discussions/lectures		
4.	3	a1, a2	The properties of water and solutions, Chapter 2	eLearning, online discussions/lectures	Quiz #1	
5.	3	a1, a2	The desalination processes analysis. Chapter 3	eLearning, online discussions/lectures		
6.	3	a1, a2, b3	The desalination processes analysis Chapter 3	eLearning, online discussions/lectures	Group work #1	
7.	3	a1, a2	The desalination processes analysis Chapter 3	eLearning, online	Midterm; Written	

				discussions/lectures	exams
8.	3	a1, a2, b1, b3	Water desalination using renewable elearning, online discussions/lectures		
9.	3	a1, a2	Water desalination using renewable energy, Chapter 4	eLearning, online discussions/lectures	
10.	3	a1, a2, b1, b3	Principle of operation of the solar collector Chapter 5	eLearning, online discussions/lectures	Group work # 2
11.	3	a1, a2, b1	Principle of operation of the solar collector (cont.)	eLearning, online discussions/lectures	
12.	3	a1, a2, b1	Principle of operation of the solar collector (cont.)	eLearning, online discussions/lectures	Quiz #2
13.	3	a1, a2, b1	Principle of operation of the solar collector (cont.)	eLearning, online discussions/lectures	
14.	3	a1, a2, b1	Analysis of systems economical feasibility study of desalination processes (cont.) Chapter 6 Solve problems	eLearning, online discussions/lectures	
15.	3	a1, a2, b1	Analysis of systems economical feasibility study of desalination processes (cont.) Chapter 6 Solve problems	eLearning, online discussions/lectures	
16.	3	a1, a2, b1	Review, and final exam	eLearning, online discussions/lectures	Written exam

Infrastructure				
Textbook	 Solar Energy Desalination Technology (PDFDrive), 1st Edition, Hongfei Zheng, 2017. Paperback ISBN: 9780128054116, eBook ISBN: 9780128094228 			
References	1. Sea, water Desalination, Andrea Cipollina, 2009, Springer,			

	ISBN: 3642011500
Required reading	Recent Advances in Membrane Science And Technology in Sea Water Desalination
Electronic materials	PPT, book, lecture notes, charts, tables
Other	Irena

Course Assessment Plan							
Assessment Method		C d-		CLOs			
		Grade	a1	a2	b1	b3	
First (Midterm)		30%	24	6			
Second (if applicable)							
Final Exam		50%	36	10	4		
Coursework		20%					
	Assignments						
	Case study						
sment	Discussion and interaction/ participation						
sses	Group work activities					10	
ork a	Lab tests and assignments						
Coursework assessment methods	Presentations / attendance						
	Quizzes		5	5			
Total		100%	65	21	4	10	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.