Jadara University

جامعة جدارا

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Pharmacy					
Department	Pharmacy			NQF level		
Course Title	Drug Delivery Systems	Code	PHC 548	Prerequisite	PHC 444	
Credit Hours	3	Theory	3	-		
Course Leader	Assoc.Professor. Dr. Ahmed Rifaat	email	Ahmed.ga@jadara.edu.jo			
Lecturers	Assoc.Professor. Dr. Ahmed Rifaat	emails	Ahmed.ga@jadara.edu.jo			
Lecture time		Classroom				
Semester		Production		Updated		
Awards				Attendance	Fulltime	

Short Description

• On completion of the course, students will be able to know the principles and types of controlled release and to have a good knowledge on the most common mechanisms in rate controlled release pharmaceutical products.

Course Objectives

- 1. Describe the basic principles of drug delivery systems.
- 2. Define various aspects concerning controlled, sustained and extended release DDS.
- 3. Illustrate the theoretical design of each system.
- 4. To provide targeting systems.

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1. Describe basics and concepts of controlled drug delivery systems Explain the types of controlled release dosage forms, advantages, and limitation for each system.

A2. Discuss diffusion and dissolution-controlled drug delivery systems.

B. Knowledge - Practical Application

A3. Illustrate the different types of controlled release products

C. Skills - Generic Problem Solving and Analytical Skills

B1. Analyze novel problems and plan strategies for their solution

D. Skills - Communication, ICT, and Numeracy

B2. Correlate patient` medical conditions with his medications based on used DDS.

E. Competence: Autonomy, Responsibility, and Context

C1. Tailoring patient's medications, dose, and route of administration

Teaching and Learning Methods

- Lectures.
- Research projects and information collection.
- discussion during lectures and tutorial
- self-learning (presenting scientific proposal)

Assessment Methods

(presentations, research, quizzes) Final exam

Course Contents						
Week	Hours	CLOs	Topics	Teaching &	Assessment Methods	
.1	3	A1,b1,	Introduction to the course	Lectures, Research projects and information collection. discussion during lectures and tutorial self-learning (presenting scientific proposal)	Assignments , Mid and final exams	
.2	3	A2,b1,	Biological and physicochemical factor affecting the design of SR	Lectures, Research projects and information collection.	Assignments , Mid and final exams	
.3	3	A2,b1,c1	Oral controlled deliver systems	discussion during lectures and tutorial self-learning (presenting scientific proposal)	Assignments , Mid and final exams	
.4	3	A2,b2,c1	Oral controlled deliver systems (cont.)	Lectures, Research projects and information collection.	Assignments , Mid and final exams	
.5	3	A3,b2,c1	Oral controlled deliver systems (cont.)	discussion during lectures and tutorial self-learning (presenting scientific proposal)	Assignments , Mid and final exams	
.6	3	A2, b1, c1	Parenteral drug delivery systems	Lectures, Research projects and information collection.	Assignments , Mid and final exams	
.7	3	A1,B2	Intra-ocular DDS	discussion during lectures and tutorial self-learning (presenting scientific proposal)	Assignments , Mid and final exams	
.8	3	A3,b2,c1	Rectal and Intra-vaginal drug delivery systems	Lectures, Research projects and information collection.	Assignments , Mid and final exams	
.9	3	A1, b2,c1	Intra-nasal DDS	discussion during lectures and tutorial self-learning (presenting scientific proposal)	Assignments , Mid and final exams	
.10	3	A2,b1,c1	Buccal DDS	Lectures, Research projects and information collection.	Assignments , Mid and final exams	
.11	3	A1, b2,c1	Nanodrug delivery systems	discussion during lectures and tutorial self-learning (presenting scientific proposal)	Assignments , Mid and final exams	

Infrastructure				
Textbook	 a) Textbook of Pharmaceutical Dispensing, Goyal and Amit, 2012. b) Ansel's pharmaceutical dosage forms and drug delivery systems, Allen and Loyd, 2008. c) A. Martin. Physical Pharmacy. Forth edition. Lea & Febiger, Philadelphia, London, 1993. 			
References	 a) M.E. Aulton. Pharmaceutics: The science of dosage form design. Churchill Living Stone, 1996. b) Bentley's textbook of pharmaceutics. 			
Required reading				

Electronic materials	lectures
Other	

Course Assessment Plan									
	Assessment Method	Crada	CLOs						
Assessment Method		Grade	A1	A2	A3	B1	B2	C1	
First (Midterm)		30	10	5		10	5		
Second (if applicable)									
Final Exam		50	5	10	15	5	5	10	
Coursework									
Coursework assessment methods	Assignments								
	Case study								
	Discussion and interaction								
	Group work activities								
	Lab tests and assignments								
	Presentations								
	Quizzes	20		5	5		5	5	
Total		100	15	20	20	15	15	15	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).
Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.