Jadara University

ref# FR/P1/P1/1/v1

COURSE DESCRIPTION

Faculty	Science and Information Technology					
Department	Software Engineering			NQF level	7	
Course Title	Programming Language I	Code	185103 Prerequisite -		te	
Credit Hours	3	Theory	2	Practical	1	
Course Leader	Dr. Nisrean Thalji	email	n.thalji@jadara.edu.jo			
Lecturers	Dr. Saleh Al Amr Dr. Azmi Halasah Dr. Moath Shatnawi Dr. Firas Zawaideh Dr. Basem Al Rifai Dr. Loay Al Sabatin Dr. Ayat Al Jarah Dr. Eslam Al-Hersh Mr. Qutiba Zaqibeh Ms. Eqbal Zuriqat Ms. Areej Al Hmoud	emails	s.alomar@jadara.edu.jo halasa@jadara.edu.jo mo.shatnawi@jadara.edu.jo f.zawaideh@jadara.edu.jo b.rifai@jadara.edu.jo l.alsbatin@jadara.edu.jo ay.aljarrah@jadara.edu.jo e.elhersh@jadara.edu.jo q.azqiba@jadara.edu.jo a.hamad@jadara.edu.jo			
Lecture time	Multi-section	Classroom	Face to face			
Semester	Second 2023/2024	Production	2009	Updated	2024	

Short Description

This course introduces the use of C++ as an aid to solve mathematical and scientific problems, creating, compiling, and executing C++ programs (Data Types, Variables, Nested control structure, Nested Loops structure, Predefined and user defined functions, 1D&2D dimensional arrays).

Course Objectives

• To let students, acquire knowledge and understand structured programming.

Promote students' skills to analyze, design, executing C++ structured programming concept.

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1. <u>Illustrate</u> basic concepts on C++ commands and code segments. (K1)

B. Knowledge - Practical Application

a2. Construct C++ code to solve basic problems and some real word cases. (K4)

C. Skills - Generic Problem Solving and Analytical Skills

b1. Evaluate C++ code using problem-solving techniques and constraints. (S2)

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

• Lecture nots, Labs, and references

Assessment Methods

Course Contents						
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods	
1	3	a1	Introduction to C++ programming: C++ program environment. processing a C++ program, programming with the problem analysis coding execution cycle.	Face to face Lectures & Labs		
2-4	9	a1, a2, b1	Basic Elements of C++ (Comments, reserved words, identifiers), data types and memory allocation, scope of an identifier, operators and operator precedence, constants and variables, input & output statements, increment and decrement operators, output, creating a C++ program, and error detection.	Face to face Lectures & Labs	Quiz	
5-8	12	a1, a2, b1	Programming Flow of Control: Control structure, ifelse statements, nested if, Repetitive structure (Loop) (for, while & do-while), & nested loops.	Face to face Lectures & Labs	Quiz Assignment	
			MIDTERM EXAM			
9-11	9	a1, a2, b1	Functions: User-defined functions, void & value-returning functions, Function Prototype, call by value and reference parameters, overloading, global variables, default parameters.	Face to face Lectures & Labs	Quiz Assignment	
12-14	9	a1, a2, b1	Arrays and Strings: Declaring and processing 1D&2D arrays, array initialization, character arrays, passing arrays to functions.	Face to face Lectures & Labs	Assignment	
Final exam						

Infrastructure				
Textbook	C++ Programming: From Problem Analysis to Design. D.S. Malik, 8th Ed., 2018.			
References	C++ How to Program, Paul J. Deitel and Harvey Deitel, Pearson, 10th Ed., 2016.			
Required reading				
Electronic				
materials				
Other				

Course Assessment Plan						
Assessment Method		Grade	CLOs			
			a1	a2	b1	
Midte	rm	30	10	10	10	
Coursework		20	5	10	5	
Final Exam		50	15	20	15	
nt	Assignments					
sme	Case study					
lsses ds	Discussion and interaction					
Coursework assessment methods	Group work activities					
	Lab tests and assignments					
	Presentations					
C	Quizzes					
Total		100	30	40	30	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.