

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Mathematics	NQF level				
Course Title	Calculus I	Code	853101 Prerequisite			
Credit Hours	3	Theory	3 Practical			
Course Leader	Dr.Wadei al-omeri	email	w.omari @jadara.edu.jo			
Lecturers	Dr. Raed Htamelh Dr Ahmed Heilat Dr. Osamh Dr. Belal Batiha Dr. Ahmad Helat Dr. AymanHazaimeh Dr. Hamzah	emails	w.omari@jadara.edu.jo			
Lecture time	10:00-11:30 Sun-Tus	Classroom	D409			
Semester	1	Production	2022 Updated 2023			
Awards				Attendance	Fulltime	

Short Description

Functions: domain, operations on functions, graphs of functions; trigonometric functions; limits: meaning of a limit, computational techniques, limits at infinity, infinite limits; continuity; limits and continuity of trigonometric functions; the derivative: techniques of differentiation, derivatives of trigonometric functions; the chain rule; implicit differentiation; differentials; Roll's Theorem; the mean value theorem; the extended mean value theorem; L'Hopital's rule; increasing and decreasing functions; concavity; maximum and minimum values of a function; graphs of functions including rational functions (asymptotes) and functions with vertical tangents (cusps); antiderivatives; the indefinite integral; the definite integral; the fundamental theorem of calculus; logarithmic and exponential functions and their derivatives and integrals; limits (the indeterminate forms); some techniques of integration.

Course Objectives

Upon completion of this course, the student should be able to:

- Know the basic theories of calculus and the accompanying mathematical techniques and procedures required and become well-trained on them.
- Solve several practical applications of calculus and to solve several applied problems using differentiation and integration in a clear, logical manner.
- Develop ability to reason logically, then transfer mathematical concepts from one situation to another rather than memorizing mechanical procedures..

Learning Outcomes

A. Knowledge - Theoretical Understanding

Student is expected to

a1) Explain the limit for various types of functions and explain whether a given function is continuous at a certain point.

a2) Discuss the idea of the differentiation and integration for various types of functions

B. Knowledge - Practical Application

a3) Use correctly some famous Theorems in calculus such as: Intermediate Value Theorem, Mean Value Theorem, and Fundamental Theorem of Calculus.

C. Skills - Generic Problem Solving and Analytical Skills

b1) Calculate limits and determine continuity for functions.

b2) Differentiate and integrate various types of functions correctly.

D. Skills - Communication, ICT, and Numeracy

b3) Gauge the capacity of knowledge by doing home works and exercises .

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

- Face to face learning
- E-learning.
- Distance learning using (Microsoft Teams).
- Problem based learning (PBL),
- Direct students to self-learning through textbooks, library, e-library, and research papers.
- Tutorials, and discussion.

Assessment Methods

Lectures, Assignments, Exams, Quizzes, Discussion and Interaction

Course Contents								
Week	Day	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods		
	Sun	1.5	a1,b3	 Functions and models Four ways to represent a function 	Face to face learning, Tutorials, and discussion	Discussion and		
1.	Tus	1.5	a1,b3	-Mathematical models: A catalog of essential functions -	nodels: A al functionsDiscussionFace to face learning, Tutorials, and discussionInteract	Interaction		
	Sun	1.5	a1,b3	New functions from old functions	Face to face learning, Tutorials, and discussion	Discussion and		
2.	Tus	Tus a 1.5	a1,b3	-Exponential functions	Face to face learning, Tutorials, and discussion	Interaction		
3.	Sun	1.5	a1,b3	-Inverse functions	Face to face learning,	Assignments,		

					Tutorials, and discussion	
	Tus	1.5	a1,b3	logarithms	Face to face learning, Tutorials, and discussion	
4	Sun	1.5	a1, b1,b3	2. Limits and derivatives Limit of a function and limit laws.	Face to face learning, Tutorials, and discussion	Discussion and
4.	Tus	1.5	a1,b1, b3	Computing limits.	Face to face learning, Tutorials, and discussion	Interaction
	Sun	1.5	a1,b1, b3	Continuity	Face to face learning, Tutorials, and discussion	Discussion and
5.	Tus	1.5	a1,b1, b3	Limits at infinity; Horizontal asymptotes -	Face to face learning, Tutorials, and discussion	Interaction
(Sun	1.5	a1,b1, a3	Derivatives and rate of change	Face to face learning, Tutorials, and discussion	Exam, Discussion and
0.	Tusa1,b1, a3-The derivative derivative		-The derivative as a function	Face to face learning, Tutorials, and discussion	Interaction	
	Sun	1.5	a2,b2, b3	Midterm exam	Midterm Exam	
7.	Tus	1.5	a2,b2, b3	3. Differentiation rules -Derivatives of polynomials and	Face to face learning, Tutorials, and discussion	Interaction
8.	Sun	1.5	a2,b2, b3	The product and quotient rules	Face to face learning, Tutorials, and discussion	Discussion and Interaction

	Tus	1.5	a2,b2, b3	-Derivatives of trigonometric functions	Face to face learning, Tutorials, and discussion	
0	Sun	1.5	a2,b2, b3	-The Chain roule	Face to face learning, Tutorials, and discussion	Discussion and
9.	Tus	1.5	a2,b2, b3	-Implicite différentiation	Face to face learning, Tutorials, and discussion	Interaction
10	Sun	1.5	a2,b2	-Derivatives of logarithmic functions	Face to face learning, Tutorials, and discussion	Discussion and
10.	Tus	1.5	a2,b2	 4. Applications of differentiation -Maximum and minimum values 	Face to face learning, Tutorials, and discussion	Interaction
	Sun	1.5	a2,b2, b3	-The mean value theorem	Face to face learning, Tutorials, and discussion	Discussion and
11.	Tus	1.5	a2,b2, b3	5. Integrals -The definite integral	Face to face learning, Tutorials, and discussion	Interaction
	Sun	1.5	a2,b2, b3	-The fundamental theorem of calculus	Face to face learning, Tutorials, and discussion	Quizz,
12.	Tus	1.5	a2,b2 b3,	-Indefinite integrals and the net change theorem	Face to face learning, Tutorials, and discussion	Interaction
12	Sun	1.5	a2, a3,b2	- The substitution rule	Face to face learning, Tutorials, and discussion	Discussion and
13.	Tus	1.5	a2, a3,b2	6. Volumes and Area Volumes by Slicing; Disks and Washers.	Face to face learning, Tutorials, and discussion	Interaction

	Sun	1.5	a2,b2, a3,b3	Area Between Two Curves	Face to face learning, Tutorials, and discussion	Discussion and	
14.	Tus	1.5	a2,b2, a3,b3	Volumes by Slicing; Disks and Washers	Face to face learning, Tutorials, and discussion	Interaction	
15	Sun	1.5	a2,b2, a3,b3	Volumes by Cylindrical Shells	Face to face learning, Tutorials, and discussion	Discussion and	
15.	Tus	1.5	a2,b2, a3,b3		Face to face learning, Tutorials, and discussion	Interaction	
Final Exam				Final Exam		Final Exam	

Infrastructure						
Textbook	James Stewart (2015) Calculus (Early Transcendental), 8th Edition, Thomson, Metric international version.					
References	 G. Thomas (2005) Calculus, 11th edition, Addison Wesley (Person Education). R. Smith and R. Minton (2007) Calculus, 3rd edition, McGraw Hill. Howard Anton, Irl Bivens and Stephen Davis (2013) Calculus, 10th edition, John Wiley and sons Inc., New York. 					
Required reading						
Electronic materials						
Other						

	Course Assessment Plan									
Assessment Method				CLOs						
		Grade	a1	a2	a3	b1	b2	b3		
First	(Midterm)	30	14			16				
Secon	d (if applicable)									
Final	Exam	50	4	4 6 4 6 30						
Cours	sework									
ew	Assignments	5						5		
ork	Case study									
Co	Discussion and interaction	10								

	Group work activities					
	Lab tests and assignments					
	Presentations					
	Quizzes	5			5	
Total		100				

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.

مدرس المساق: دوديع العمري

رئيس القسم: د. طارق قواسمة