ref# FR/P1/P1/1/v1

COURSE DESCRIPTION

Faculty	Engineering					
Department	Renewable Energy Engineering			NQF level 7		
Course Title	Solar Energy System and Technology	Code	703432	Prerequisite		
Credit Hours	3	Theory	3	Practical 0		
Course Leader	Dr. Rana A. Haj Khalil	Email	R.Hajkhalil@jadara.edu.jo			
Lecturers	Dr. Amer Al- Canaan	Email	a.alcanaan@jadara.edu.jo			
Lecture time	08:30- 09:45 Sun-Wed	Classroom	D 403	Attendance	On campus	
Semester	Summer 2021/2022	Production	October 2021	Updated	July 2022	

Short Description

This course introduces students to solar energy systems and their applications. The topics covered in this course include solar radiation, selected heat transfer topics, flat-plate collectors, solar heater power system, solar cooling and design of solar thermal and photovoltaic systems.

Course Objectives

- 1. explain the technical and physical principles of solar cells and solar collectors,
- 2. measure and evaluate different solar energy technologies through knowledge of the physical function of the devices,
- 3. calculate the required size of solar cell systems and solar collectors from a given power need by using appropriate tools/software,
- 4. make critical comparisons of different solar energy systems,
- 5. communicate technological and environmental issues related to solar energy in a concise and accessible way to a target group with basic technical skills.

Course Intended Learning Outcomes (CILOs)

A. Knowledge - Theoretical Understanding

a.1 Explain/understand the fundamentals/physical principles of solar systems and their applications. (K1)

B. Knowledge – Practical Applications

a.2 Compare different solar energy systems in terms of design and performance criteria. (K2)

C. Skills - Generic Problem Solving and Analytical Skills

b.1 Calculate the required design parameters of thermal/photvoltaic solar energy systems from a given power need by using appropriate equations/software. (S1)

D. Skills - Communication, ICT, and Numeracy

b.3 Work in groups and Write technical report and perform oral presentations related to fundamentals of solar energy systems and their applications. (S3)

Teaching and Learning Methods

E-learning (Blackboard), Engaged learning, Problem-based learning (PBL), and Project-based learning:

Assessment Methods

Class Participation and Assignments

Term Project/Presentation

HW

Quizzes

Midterm Exam

Final Exam

Course Contents						
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods	
1.	5	a1	Introduction 1- Solar radiation 2- Available Solar radiation	Lectures, presentations		
2.	5	a1	 3- Selected heat transfer topics 4- Radiation characteristics of opaque materials 5- Radiation through glazing absorbed radiation 	Lectures, presentations		
3.	4.5	a2, b1, b3	6- Flat-plate collectors7- Concentrating collectors	Lectures, presentations	Group work #1 Quiz #1	
4.	4	a1, a2, b1	12 Solar water heating 15 Solar cooling Midterm exam	Lectures, presentations	Midterm exam	
5.	4.5	a1, a2, b1	17—Solar Power Thermal System 18—Solar ponds	Lectures, presentations	Quiz #2	
6.	5	a1, a2, b1, b3	19 Simulation in Solar Process Design 20—Design of active systems: f- Chart	Lectures, presentations	Group work #2	
7.	5	a1, a2, b1	22 Design of passive and hybrid heating system 23—Design of photovoltaic system	Lectures, presentations		
8.	2	a1, a2, b1	Review Final Exam	Lectures	Final exam	

Infrastructure				
Textbook	 Solar Engineering of Thermal Processes, Photovoltaics and Wind, John A. Duffie, William A. Beckman, 5th Edition, Wiley, 2020 			
References	 A Comprehensive Guide to Solar Energy Systems With Special Focus on Photovoltaic Systems, 1st Edition - May 17, 2018, Editors: Trevor Letcher, Vasilis M. Fthenaki. Morton, Oliver (6 September 2006). "Solar energy: A new day dawning?: Silicon Valley sunrise". Nature. 443 (7107): 19–22. Bibcode:2006 			
Required reading	"Radiation Budget". NASA Langley Research Center. 17 October 2006. Retrieved 29 September 2007.			
Electronic materials	Ppt, book, lec, charts, tables			
Other	NErL			

Course Assessment Plan							
Assessment Method		Grade	CLOs				
			a1	a2	b 1	b3	
First (Midterm)		30%	12	10	8		
Second (if applicable)							
Final Exam		50%	25	15	10		
Cours	Coursework						
ıt	Assignments						
men	Case study						
Coursework assessment methods	Discussion and interaction/participation						
	Group work activities					10	
	Lab tests and assignments						
	Presentations/attendance						
	Quizzes			5	5		
Total		100%	37	30	23	10	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which several individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means

that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. To allow proper assessment that this is indeed the case, you must adhere strictly to the coursework requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.