ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology							
Department	Mathematics	NQF level	5					
Course Title	Complex Analysis I	Code	505308	Prerequisite	505202			
Credit Hours	3	Theory	3 Practical 0		0			
Course Leader	Dr: Tariq Qawasmeh email ta.qawasmeh@jadara.edu.jo							
Lecturers	Dr: Tariq Qawasmeh	emails	ta.qawasmeh@jadara.edu.jo					
Lecture time	08:30-10:00 Mon, Wen	Classroom	D403	Attendance	Fulltime			
Semester	First Semester 2021\2022	Production	2008	Updated	2021			

Short Description

The objective of this course is to introduce the fundamental ideas of the functions of complex variables and developing a clear understanding of the fundamental concepts of Complex Analysis such as analytic functions, complex integrals and a range of skills which will allow students to work effectively with the concepts.

Course Objectives

Algebraic of properties complex numbers, Exponential, Logarithmic and trigonometric functions, and their inverses, Analytic functions: Cauchy – Riemann equations, polar coordinates and Harmonic functions, Integrals: Cauchy–Goursat theorem and Cauchy integral formula.Intended Learning

Learning Outcomes

A. Knowledge - Theoretical Understanding

- a1) Discuss fundamentals and basic properties of the complex number.
- a2) Compare the fundamentals and basic properties between the real Numbers and Complex Numbers.

B. Knowledge - Practical Application

a3) Demonstrate the fundamental concepts of complex analysis and their role in modern mathematics.

C. Skills - Generic Problem Solving and Analytical Skills

b1) Develop Theorems and Lemmas from real Analysis to complex.

D. Skills - Communication, ICT, and Numeracy

b2) Illustrate Cauchy Riemann Equation and Cauchy Coursat Theorem.

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

Lectures, discussions, and solving selected problems.

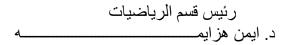
Assessment Methods

- Discussion and Interaction
- Mid Term Exam, Final exam, Class Assignment Quizzes,

	Course Contents							
Week	Day	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods		
	Mon	1.5	a1, a3, b2.	Complex numbers: sums and products, Algebraic properties,.	Lecturing, examples,	Quizzes Assignments		
1.	Wen	1.5	a1, a3, b2.	Moduli and conjugates	Discussion			
	Mon	1.5	a1, b1, b2	Triangle Inequality.	Lecturing, examples, Discussion	Quizzes Assignments		
2.	Wen	1.5	a1, b1, b2	Polar coordinates and Euler's formula.				
2	Mon	1.5	a1, a2. a3, b2,	Root in complex plane.	Lecturing, examples,	Quizzes Assignments		
3.	Wen	1.5	a1, a2. a3, b2,	Regions in the complex plane.	Discussion			
_	Mon	1.5	a1, b2. a3	Analytic functions: Functions of complex variable.	Lecturing, examples,	Quizzes Assignments		
4.	Wen	1.5	a1, b2. a3	limits, Theorem on limits.	Discussion			
	Mon	1.5	a1, b1,	Continuity of complex functions	Lecturing, examples,	Assignments		
5.	Wen	1.5	a1, b1,	Derivatives, Differentiation formulas.	Discussion			
	Mon	1.5	a1, b2,	Cauchy-Riemann Equations.	Lecturing, examples,	Assignments		
6.	Wen	1.5	a1, b2,	sufficient conditions for Differentiability.	Discussion			
7.	Mon	1.5	a1, b2. a3	Polar coordinates analytics	Lecturing,	Assignments		

				functions.	examples,			
	Wen	1.5	a1, b2. a3	Harmonic functions.	Discussion			
8.	Mon	1.5	a1, b2. a3	Elementary Functions: The exponential function.	Lecturing, examples, Discussion	Mid -Exam		
0.	Wen	1.5	a1, b2. a3	Trigonometric Function, Hyperbolic Function.				
	Mon	1.5	a2, a3	The logarithmic function and its Branches.	Lecturing, examples,	Assignments		
9.	Wen	1.5	a2, a3	some identities involving logarithms, complex exponent.	Discussion			
10	Mon	1.5	a2, a3	Integrals: complex-valued functions.	Lecturing, examples,	Quizzes Assignments		
10.	Wen	1.5	a2, a3	Integrals: contours, contours integrals.	Discussion			
	Mon	1.5	a1, b2. a3	Examples, Antiderivatives.	Lecturing, examples,	Quizzes Assignments		
11.	Wen	1.5	a1, b2. a3	Examples, Antiderivatives.	Discussion			
12.	Mon	1.5	a1, b2. a3	Cauchy-Goursat Theorem,	Lecturing, examples, Discussion	Quizzes Assignments		
·	Wen	1.5	a1, b2. a3	simply and multiply connected domains				
	Mon	1.5	a1	Cauchy integral formula.	Lecturing, examples,	Quizzes Assignments		
13.	Wen	1.5	a1	Derivative of analytic functions	Discussion			
	Mon	1.5	a1	Morera's theorem	Lecturing, examples,	Quizzes Assignments		
14.	Wen	1.5	a1	Liouvlle's Theorem	Discussion			
1.5	Mon	1.5	a1, a3	Fundamental theorem of algebra,	Lecturing, examples,	Quizzes Assignments		
15.	Wen	1.5	a1, a3	Maximum moduli of function	Discussion			
16.		Final Exam						

Infrastructure						
Textbook	Complex Variables and Applications, By James Ward Brown, Ruel V. Churchill					
References	1- J.Paliouras 8 D.S. Meadows, "Complex variables for scientists and Engineers".2nd Edition2-Marsden, J.E.& M.J. Hoffmann "Basic complex Analysis."					


	3-Alfors, L.V, "Complex Analysis".
Required reading	
Electronic materials	
Other	

Course Assessment Plan							
Assessment Method		Grade		CLOs			
			a1	a2	a3	b1	b2
First (Midterm)		30	10	5	5	4	6
Second (if applicable)		0					
Final Exam		50	12	8	18	7	5
Cours	Coursework						
nt	Assignments						
sme	Case study						
sses	Discussion and interaction			5			
Coursework assessment methods	Group work activities	-					
	Lab tests and assignments	5		5			
	Presentations	-					
	Quizzes	10	5		5		
Total		100	27	23	28	11	11

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.

منسق المادة د. طارق قواسمة