

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Mathematics			NQF level 6		
Course Title	Calculus III Code 505201			Prerequisite	505102	
Credit Hours	3	Theory	3 Practical 0			
Course Leader	Osama Ala'yed	email	alayedo@Jadara.edu.jo			
Lecturers	Osama Ala'yed	emails	alayedo@Jadara.edu.jo			
Lecture time	10:00-11:30 Sun- Tues	Classroom	D406			
Semester	First	Production	Updated 2020		2020	

ShortDescription

Three-dimensional coordinate systems; vectors: dot product, projections, cross product, parametric equations of lines, planes in 3-spaces; vector-valued functions: calculus of vector valued functions, change of parameters, arc length, unit tangent and normal vectors; functions of two or more variable: domain, limits, and continuity; partial derivatives; differentiability; total differentials; the chain rule; the gradient; directional derivatives; tangent planes; normal lines; maxima and minima of functions of two variables; Lagrange multipliers; multiple integrals: double integral.

Course Objectives

On completion of this course, students should be able to:

1. Write equations of planes and lines in 3-space and distinguish them from any other equations.

2. Distinguish between vectors and scalars.

3. Use partial differential when dealing with functions of several variables.

4. Evaluate double integrals over general regions.

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1. Demonstrate the basic concepts of calculus.

B. Knowledge - Practical Application

a2. Compute limits and partial derivatives of functions of several variables.

C. Skills - Generic Problem Solving and Analytical Skills

b1. Apply vector operations in space and Construct equations of lines and planes in space.

D. Skills - Communication, ICT, and Numeracy

b2. Classify extreme values of a function of two variables and apply them to optimization problems.

E. Competence: Autonomy, Responsibility, and Context

c1. Evaluate double integrals in rectangular coordinate systems

Teaching and Learning Methods

Lectures, discussions, and solving selected problems

Assessment Methods

Participation questions, quizzes, assignments, and exams

Course Contents						
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods	
	1.5 1 a1, b1		Three-dimensional coordinate systems	Lectures, discussions, and	Participation question,	
1 1.5		a1, 01	Vectors	solving selected problems	quiz, homework	
2	2 3 a1, b1 The dot product		Lectures, discussions, and solving selected	Participation question, quiz,		
			The cross product	problems	homework	
3	3	a1, b1	The cross product (Cont.)	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
4	3	a1, b1	Lines	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
5	3	a1, b1	planes	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
6	3	al	Cylinders and quadric surfaces	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
_	1.5	a1, b1	Vector functions and space curves	Lectures, discussions, and	Participation question,	
7	1.5		Derivatives and integrals of vector functions	solving selected problems	quiz, homework	
8	1.5	a1, b1	Derivatives and integrals of vector functions	Lectures, discussions, and	Participation question,	

	1.5		Arc length	solving selected problems	quiz, homework	
0	1.5 a1, a2	Functions of several variables, level curves, level surfaces	Lectures, discussions, and	Participation question,		
9 1.5		,	Midterm Exam 30%	solving selected problems	quiz, homework	
10	1.5	a1, a2	Partial derivatives, Limit and continuity	Lectures, discussions, and	Participation question,	
10 1.5			Equality of Mixed partials, Differentiability	solving selected problems	quiz, homework	
11	1.5 11 1.5 1.5		Gradient and directional derivative	Lectures, discussions, and	Participation question,	
11			chain rule	solving selected problems	quiz, homework	
12	3	a1, a2	The Gradients as a normal, Tangent line, Tangent plane	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
	1.5	1.1.0	Maximum and Minimum values	Lectures, discussions, and	Participation question,	
13	1.5	a1, b2	Second partial test	solving selected problems	quiz, homework	
14	3	a1, b2	Maxima and Minima with side conditions	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
15	3	a1, c1	Sigma notations. The double integral over a rectangle.	Lectures, discussions, and solving selected problems	Participation question, quiz, homework	
16			Final Exam		I	

Infrastructure					
TextbookStewart, J., Clegg, D. K., & Watson, S. (2020). Calculus: early transcendentals. Cengage Learning.					
References	 Anton, H., Bivens, I. C., & Davis, S. (2016). <i>Calculus: Early</i> <i>Transcendental Single Variable</i>. John Wiley & Sons. Salas, S. L., Etgen, G. J., &Hille, E. (2006). <i>Calculus: one and</i> <i>several variables</i>. John Wiley & Sons. 				
Required reading	Salas, S. L., Etgen, G. J., &Hille, E. (2006). <i>Calculus: one and several variables</i> . John Wiley & Sons.				

Electronic materials	
Other	

Course Assessment Plan								
Assessment Method		Grade		CLOs				
		Graue	a1	a2	b1	b2	c1	
First(Midterm)		30	6	6	18	0	0	
Second (if applicable)								
Final Exam		50	6	6	18	14	6	
Coursework		20						
Coursework assessment methods	Assignments	10	2	2	2	2	2	
	Case study							
	Discussion and interaction	5	1	1	1	1	1	
	Group work activities							
	Labtests and assignments							
	Presentations							
C	Quizzes	5	0	0	0	5	0	
	Total	100	15	15	39	22	9	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.

